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Abstract

The issue of local thermal equilibrium between a solid porous matrix and a saturating "stagnant# ~uid under
unidirectional steady heat di}usion is considered focusing on the e}ect of exterior!boundary thermal conditions[ We
demonstrate that in the case of exterior boundaries with uniform heat ~ux\ i[e[\ when the heat per unit of phase area
~owing through each phase is equal\ thermal equilibrium will ensue only when the phases have the same thermal
conductivity[ When the phases are in thermal equilibrium at the exterior boundaries\ then they will be in thermal
equilibrium throughout the entire domain independently of the properties of each phase[ In this case\ the ratio of the
heat ~owing through each phase will be uniform within the layer and proportional to the thermal conductivity phase!
ratio[ With uniform heat ~ux at one end and thermal equilibrium at the other end of the domain\ four independent
criteria lead to thermal equilibrium[ For a small ~uid!to!solid volumetric heat transfer coe.cient the medium reaches a
state of maximum thermal nonequilibrium[ A criterion for estimating the thermal equilibrium status within the layer is
also derived[ This criterion is important for the experimental determination of the e}ective thermal conductivity of a
saturated porous layer[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A area ðm1Ł
Bi Biot number
C0\ C1 constants of integration
d characteristic ~uidÐsolid cell length ðmŁ
h convection heat transfer coe.cient ðW m−1 K−0Ł
2 volumetric heat transfer coe.cient ðW m−2 K−0Ł
k thermal conductivity ðW m−0 K−0Ł
L thickness of the porous layer ðmŁ
n unit vector
q rate of heat supply\ equation "2# ðWŁ
T temperature ðKŁ
V volume ðm2Ł
x\ y\ z Cartesian coordinates ðmŁ
X nondimensional coordinate\ X � xL−0[

Greek symbols
g surface porosity\ equation "4#
G ratio of nonequilibrium temperature gradient\
G � dLd−0

9

d gradient of nonequilibrium temperature\ equation
"07# ðK m−0Ł

D di}erence
u nondimensional temperature\ u � ltd−0

9

k thermal conductivity phase ratio\ equation "00#\
k � ksk

−0
f

l auxiliary parameter\ equation "03# ðm−0Ł
L nondimensional parameter\ L � lL
s porosity coe.cient\ equation "00#
S summation
t nonequilibrium temperature\ t �"Tf−Ts# ðKŁ
f volume porosity\ equation "5#[

Superscripts:subscripts
f ~uid phase
L at x � L
n index\ n � x\ y\ z
s solid phase "porous matrix#
9 at x � 9
" #? spatial deviation
" #ý per unit of area
" #?ý per unit of volume
" #� microscopic[
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0[ Introduction

Thermal di}usion is the simplest transport process in
fully saturated porous media[ It is also one of the most
important for the implications it has on several engin!
eering processes[ For instance\ heat di}usion determines
"with the minimization of convection and radiation# the
e}ectiveness of powder and _ber insulation materials and
of desiccant porous materials ð0Ð4Ł[ It is also believed that
maintaining a pure di}usion process within the mushy
"porous# zone reduces macrosegregation during casting
solidi_cation ð5Ł[ Furthermore\ di}usion dominated
transport of heat and moisture can have a detrimental
e}ect on important processes\ like retarding the drying
of fruits\ grains and vegetables ð6\ 7Ł[ Another important
application is to phase!change within insulating porous
matrices[ In this case\ the conduction regime is fun!
damental for predicting the initial phase!change devel!
opment inside the matrix ð8Ł[

Only a very reduced number of studies published in the
past years considered the fundamentals of heat di}usion
through saturated porous media[ We suggest that the two
main factors are responsible for this lack of publications]
"0# the complexity of the real process\ and "1# the sim!
pli_cation of existing models[

The _rst factor has to do with the di.culty in charac!
terizing the internal "pore!level# geometry of most porous
media[ Following precisely the internal structure of the
solid matrix for studying the heat transport process
taking place within a porous medium is a task beyond
existing mathematical and computational tools[ There!
fore\ the pore!level solution of the di}usion equation
within a porous medium seems impractical at the moment[

The second factor follows from the necessity to develop
suitable models for predicting\ at least approximately\ the
heat di}usion process inside a saturated porous medium[
The method of volume averaging ð09Ð01Ł\ for instance\
transforms the e}ects of the internal geometry of the
solid matrix from a microscopic level "pore!level# into a
macroscopic representative elementary volume level "rev!
level#[ This transformation does not come free] heat
transfer interaction at the solidÐ~uid interface within an
rev must be accounted for and modeled[ In trying to
resolve this di.culty\ the thermal equilibrium assump!
tion\ i[e[\ assuming negligible the di}erence between the
volume!averaged solid and ~uid temperatures within an
rev\ is usually invoked[

By applying the volume averaging technique and the
thermal equilibrium assumption to the microscopic
di}usion equation\ one obtains " for isotropic media# the
Laplace equation with an e}ective thermal conductivity
parameter in place of the usual molecular thermal di}u!
sivity "see p[ 019 of Kaviany ð02Ł#[ From this point on\
the thermal equilibrium temperature distribution within
the porous domain can be obtained from existing solu!
tions of conduction heat transfer within homogeneous

media by replacing the molecular conductivity with the
e}ective thermal conductivity of the porous medium[ The
problem is then transferred from modeling the heat
di}usion process per se to determining the e}ective ther!
mal conductivity of saturated porous media\ what is in
itself an active research area ð03Ð19Ł[

Although the simpli_cations brought about by the vol!
ume averaging technique and the thermal equilibrium
assumption are of practical signi_cance\ an important
aspect seems to have been overlooked[ In several appli!
cations the surrounding\ or exterior boundary\ drives the
heat transfer process within the porous medium[ The
thermal interaction between the surrounding and the
porous medium is represented by suitable boundary con!
ditions[ These boundary conditions must be consistent
with the macroscopic equation\ i[e[\ they must accord
with the volume averaging approach and with the thermal
equilibrium assumption[

Obviously\ there might be situations in which the
phases of the medium within a region near the exterior
boundary are not in thermal equilibrium in which case
a special treatment "e[g[\ two!temperature modeling# is
necessary[ Knowing the extent of this region is of interest
because the thermal equilibrium model can still be used
in the interior region of the domain where the thermal
equilibrium assumption becomes valid[

We notice that the studies considering theoretical mod!
els for predicting the e}ective thermal conductivity of a
porous medium "in line with the thermal equilibrium
assumption# limit their scope to periodic structures for
which the conditions at the exterior "macroscopic#
boundaries of the porous domain do not interfere with
the problem within the macroscopic domain\ see for
instance p[ 71 of ð10Ł] {{In all this discussion\ we have
assumed that boundary e}ects at the exterior boundary
of the entire porous domain do not interfere with the
homogenization problem within the macroscopic
domain[|| To validate these models experimentally\ data
must be collected within a region far enough from the
boundaries where the thermal equilibrium assumption
is valid[ The size of this region*or distance from the
boundaries*will certainly depend on the boundary con!
ditions imposed to the medium[

There has been no attempt to clarify the implications
of the exterior boundary conditions "used most fre!
quently are the isothermal and iso~ux conditions# on
the thermal equilibrium assumption for a surrounding!
driven heat conduction process through a porous me!
dium layer[ This is a very important and overlooked
aspect because the idea of modeling the di}usion process
with a single "average# Laplace equation and an e}ective
thermal conductivity is meaningful only when the ther!
mal equilibrium assumption is valid within the entire
domain\ including the exterior boundary region[

Another very curious aspect is that surrounding!driven
steady heat conduction\ in conjunction with the thermal



J[L[ La`e:Int[ J[ Heat Mass Transfer 31 "0888# 366Ð374 368

equilibrium assumption\ has been for years the preferred
con_guration for the experimental determination of the
e}ective thermal conductivity of saturated porous media
ð11Ð14Ł[ The e}ective thermal conductivity is usually cal!
culated as the ratio between the measured heat ~ux and
the temperature gradient along the solid phase computed
using the temperatures measured at "or near# the bound!
aries of the porous domain[ When the boundary region
of the porous medium is at nonthermal equilibrium this
procedure is invalid[

We note in passing that although referring to thermal
di}usion through a saturated porous medium\ when con!
vection and radiation e}ects can be neglected " for criteria
see ð09Ł# the problem becomes analogous to that of heat
conduction through composite solid materials ð15Ð17Ł[

Our analysis is distinct from the e}ect of nonuniform
porosity near bounding surfaces on the e}ective thermal
conductivity of a porous medium "see details in Kaviany
ð02Ł\ Section 2[6#[ In what follows we investigate the
relationship between the exterior boundary conditions of
a surrounding!driven heat conduction process and the
thermal equilibrium assumption[ For simplicity we
restrict our reasoning to a plane\ fully saturated\ porous
layer under steady conduction heat transfer[ This simple
domain has practical relevance because it is the preferred
characteristic con_guration for measuring the e}ective
thermal conductivity of insulating porous layers and
composites[

1[ Model

Consider the following simpli_ed steady heat di}usion
equations for the ~uid and solid phases of an isotropic
porous medium\ obtained from volume averaging "see\
for instance\ Kaviany ð02Ł\ pp[ 006Ð019\ for details on
deriving a more general equation#

9 � fkf91Tf¦kf

0
V $09 = gAfs

nfsT?f dA1
¦gAfs

nfs = 9T�f dA% "0#

9 �"0−f#ks91Ts¦ks

0
V $09 = gAfs

nsfT?s dA1
¦gAfs

nsf = 9T�sf dA% "1#

where f is the porosity of the medium\ kf and ks are the
molecular thermal conductivities of each phase\ Tf and
Ts are the volume average temperatures\ T?s and T?f are
the spatial deviation temperatures\ T�s and T�f are the local
"microscopic# temperatures\ nsf and nfs are unit vectors
"nsf � −nfs# normal to Afs\ the interphase surface area\
and V is the volume of a representative elementary vol!
ume of the porous medium[

When considering the validity of the thermal equi!
librium assumption\ it is more convenient to replace the
last term of equations "0# and "1# with a volumetric heat
source "or sink# term\ representing the energy exchange
between ~uid and solid phases[ Written in terms of the
volume average temperatures\ we have

fkf91Tf � 2"Tf−Ts# "2#

"0−f#ks91Ts � −2"Tf−Ts#[ "3#

This very peculiar term\ namely 2"Tf−Ts#\ represents the
macroscopic energy exchanged between ~uid and solid
within a volume V[ The formal de_nition of 2 is then

2 �
qfs1

"Tf−Ts#
"4#

where qfs1 is the amount of energy per unit of time "power#
exchanged between the ~uid phase and the solid phase
per unit of volume V[ The heat transfer coe.cient 2

should not be confused with the heat transfer coe.cient
h used in convection heat transfer analysis "this dis!
tinction was emphasized by Kaviany ð02Ł\ p[ 252\ in the
context of thermal nonequilibrium of convection heat
transfer#[ For one reason 2 is de_ned independently of
~uid motion\ i[e[\ 2 is not necessarily zero when the ~uid
saturating the porous medium is stationary[ Moreover\
by de_nition the units of 2 are W m−2 K−0\ and not
W m−1 K−0[

Equations "2# and "3# can be recombined using the
nonequilibrium temperature variable t\ de_ned as the
di}erence between the ~uid and solid temperatures\
t �"Tf−Ts#\

91t � 2 0
0

fkf

¦
0

"0−f#ks1 t[ "5#

2[ Unidirectional conduction

We now consider the simpler problem of conduction
heat transfer through a porous\ in_nitely long\ layer of
thickness L[ This can be treated as a one!dimensional
steady conduction problem\ from equation "5#\

d1t

dx1
� l1t "6#

where

l1 � 2 0
0

fkf

¦
0

"0−f#ks1 [ "7#

Equation "6# has the general solution

t � C0 sinh"lx#¦C1 cosh"lx# "8#

where the constants C0 and C1 are determined by
imposing the boundary conditions in t at x � 9 and at
x � L[
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2[0[ Case 0] heat ~ow boundary conditions

The Neumann!type boundary conditions of equation
"8# are obtained from the boundary conditions of each
individual phase at x � 9 and L\ namely

−fkf

dTf

dx b9\L

� qýf =9\L and −"0−f#ks

dTs

dx b9\L

� qýs =9\L

"09#

where the heat ~uxes are per unit of total surface area A
"�Af¦As#[ Conditions "09# can be combined and written
as

d"Tf−Ts#
dx b9\L

�
dt

dx b9\L

� d9\L "00#

where

d9 � $−
qýf

fkf

¦
qýs

"0−f#ks%x�9

and dL � $−
qýf

fkf

¦
qýs

"0−f#ks%x�L

[ "01#

Observe that the ~uid phase heat ~ux and the solid
phase heat ~ux at x � 9 might not be necessarily the same
as the heat ~uxes at x � L[ However\ the total heat ~ux
must be conserved in a steady regime\ that is\

qý �"qýf¦qýs# =x�9 �"qýf¦qýs# =x�L [ "02#

The constants C0 and C1 of equation "8# are then deter!
mined by imposing the boundary conditions listed in
equation "00#[ The _nal solution in this case is

t �
0
t

"d9 sinh"lx#¦ð−d9 coth"lL#

¦dL csch"lL#Ł cosh"lx##[ "03#

We can now consider the particular case of uniform
heat ~ux condition at the boundaries\ i[e[\ when the heat
per unit of ~uid!phase area is the same as the heat per
unit of solid!phase area[ In this case\ qý �"qf1:f# �
ðqýs:"0−f#Ł and equation "03# becomes

t �
qý
l $−

0
kf

¦
0
ks% "sinh"lx#¦ð−coth"lL#

¦csch"lL#Ł cosh"lx##[ "04#

Therefore\ the thermal equilibrium assumption\ i[e[\
t � 9 everywhere\ is inconsistent with the uniform heat
~ux condition unless the constraint kf � ks is satis_ed[

Consider now a situation in which one is capable of
controlling the amount of energy "heat# being transferred
to and from ~uid and solid independently at the bound!
aries of the saturated porous medium[ Consider further
that the heat ~ow across the ~uid is the same as the heat
~ow across the solid at x � 9 and L[ With
qýf � qýs �"qý:1# from equation "02# in equation "01#\ and
the result in equation "03#\ the di}erence between ~uid
and solid temperatures becomes

t �
qý

1l $−
0

fkf

¦
0

"0−f#ks% "sinh"lx#

¦ð−coth"lL#¦csch"lL#Ł cosh"lx##[ "05#

In this case\ the thermal equilibrium assumption t � 9
everywhere is inconsistent with the equally partitioned
heat ~ow condition unless the constraint fkf �"0−f#ks

is satis_ed[ Therefore\ the only way to obtain thermal
equilibrium in the system is to compensate the thermal
conductivity deviation between phases kf:ks with an
inverse phase!deviation of cross!section surface area
As:Af �"0−f#:f[ Another interesting conclusion is that
even when kf � ks the thermal equilibrium assumption
for equally partitioned heat ~ow conditions is not valid
if f � 9[4[ This is so because when the porosity is di}erent
than 9[4 the amount of heat going through one phase is
di}erent than the amount of heat going through the other
phase[

Using equation "03# we can obtain\ for the problem of
conduction heat transfer across a layer with Neumann
boundary conditions "not necessarily uniform heat ~ux
or equal heat ~ow#\ general results for the deviation from
thermal equilibrium[ For simplicity we consider the
dimensionless equivalent of equation "03#\

u � sinh"LX#¦ðG csch"L−coth"L#Ł cosh"LX# "06#

where the nondimensional quantities are] coordinate
X � x:L\ temperature u � lt:d9\ and coe.cient L � lL[
The parameter L is the ratio dL:d9\ i[e[\ the ratio of non!
equilibrium temperature gradients at L and 9\ equations
"00# and "01#[ We note in passing that the non!
dimensional parameter G is equivalent to "Bis¦Bif#0:1\
where Bis and Bif are the equivalent Biot numbers of solid
and ~uid phases\ respectively\ "2L#L:fkf and
"2L#L:"0−f#ks[

Figure 0 presents results of equation "06# for the case
G � 0[9\ a case equivalent to equal nonequilibrium tem!
perature gradients at x � 9 and L[ The graph presents the
dimensionless nonequilibrium temperature distribution
only along half of the domain\ 9[4 ¾ X ¾ 0[9\ to help
distinguish the curves for di}erent L values[ Observe\
however\ that the u temperature distribution of equation
"06# is an odd function of X in relation to X � 9[4\ i[e[\
u"X# � −u"0−X# for 9¾ X ¾ 0[9[ Therefore\the tem!
perature distribution within 9 ¾ X ¾ 9[4 is the inverted
mirror image of Fig[ 0[

We begin our discussion considering the case L � 0[9\
shown in Fig[ 0 with a thick line[ This case reveals that u

increases almost linearly with X[ Considering l\ L\ and
d9 as constants\ let us say\ the increase in u is translated
into an increase in the nonequilibrium temperature\ i[e[\
the thermal nonequilibrium between the phases is
enhanced along X[ Observe that the middle of the
domain\ at X � 9[4\ is the only location at which ~uid
and solid are in thermal equilibrium for any value of l

or d9[
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Fig[ 0[ Nondimensional nonequilibrium temperature distribution along half!domain for G � 0[9[

Decreasing the value of L to 9[4\ 9[0\ and 9[90\ reveals
a reduction in the u variation with X[ This observation\
born out of Fig[ 0\ has to be taken cautiously[ The fact
is that u is related to the nonequilibrium temperature via
l[ If one considers L as being held constant\ decreasing
L decreases l by the same factor[ Therefore\ the value of
u is automatically reduced even if the value of "Tf−Ts#\
for constant d9\ is maintained the same[ In fact\ this is
exactly what seems to be happening] notice in Fig[ 0 that
u"L0#:u"L1# ½"L0:L1#\ where L0 and L1 are any two L
values smaller than\ or equal to\ 0[9[

We can then conclude that for L ¾ 0[9 the system
rapidly tends to its maximum nonequilibrium condition[
This means physically that the coe.cient of energy trans!
fer between ~uid and solid 2 is so small as compared to
the thermal conductivities that further decrease does not
alter the temperature distribution within either solid or
~uid phases[ "Recall the de_nition equation "7# to reco!
gnize that small values of L can be obtained with small
values of 2\ or in other words\ media in which the transfer
of energy between solid and ~uid is increasingly
hampered[# This conclusion has important practical
implications] for an experimental con_guration with
equal nonequilibrium temperature gradients at the
boundaries and L ¾ 0[9\ and where the temperature of
only one phase is monitored\ the response of the system
to heat variation " for instance# is likely to be similar to
the response from a system in thermal equilibrium when\
in reality\ the system is in its maximum thermal non!
equilibrium state[

When the coe.cient L increases beyond 0[9\ the u

variation with X is further increased[ However\ the vari!
ation of u with X is increasingly nonlinear] observe for
instance the maximum variation in u values along X to
be less than 1[4 times when L increases by _ve times\ from

0[9Ð4[9[ This clearly indicates that the nonequilibrium
temperature "or the di}erence in phase temperatures# is
decreasing[ This conclusion is con_rmed by noticing the
reduction of u values when L increases further to 09\ and
then to 29[ One should be careful with a further increase
of L because\ with the present boundary con_guration\
the energy equation "06# becomes singular] as L increases
the gradient of u at X � L increases at the same rate "with
G � 0[9\ the boundary condition at X � 0 is du:dX � L#
but the values of u along X tend to zero[ These two
remarks taken together indicate a singularity at X � L
when L tends to in_nity[

The observation that L ½ 0[9 marks the threshold of
asymptotic thermal nonequilibrium between the phases
also for G × 0[9 and for G ³ 0[9[ The main di}erence
between the cases G × 0[9 "see Fig[ 1 for G � 0[91\ for
instance# or G ³ 0[9 "see Fig[ 2 for G � 9[87\ for instance#
and the case G � 0[9 is that the deviation from thermal
equilibrium happens more abruptly as L decreases from
0[9[ The symmetry around 9[4 is also lost when G � 0[9[

2[1[ Case 1] temperature boundary condition

Considering the case of local thermal equilibrium at
the boundaries x � 9 and x � L\ i[e[\ t9\L � 9\ equation
"8# gives C0 � C1 � 9[ Therefore\ when the phases are in
thermal equilibrium at the boundaries the entire layer
must be at thermal equilibrium\ t � 9\ for any x[ This
result together with equation "00# leads to d9 � dL � 9\
which implies\ via equation "01#\

qýf
qýs bx�9

�
qýf
qýs bx�L

�
fkf

"0−f#ks

[ "07#

Therefore\ if the thermal equilibrium assumption at the
boundaries of the domain is invoked\ the heat ~ow
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Fig[ 1[ Nondimensional nonequilibrium temperature distribution along X for G � 0[91[

Fig[ 2[ Nondimensional nonequilibrium temperature distribution along X for G � 9[87[

through each phase must follow the relation given by
equation "07#[ Coincidentally\ equation "07# indicates
that fkf �"0−f#ks is a necessary condition for equally
partitioned heat ~ow through the phases when the ther!
mal equilibrium assumption is invoked at the boundaries\
in agreement with the requirement found in case "0#[

This case can be used in practice to check whether the
thermal equilibrium assumption is valid by monitoring
the di}erence of phase temperatures only at the bound!
aries of the porous layer[

2[2[ Case 2] hybrid boundary conditions

Consider now equation "6# with uniform heat ~ux
qý � qýf:f � qýs:"0−f# at x � 9\ and equilibrium tem!

perature at x � L\ respectively\ "dt:dx#9 � d and tL � 9\
where

d � qý $−
0
kf

¦
0
ks% [ "08#

This case is perhaps the most realistic "practical# model
of the experimental con_guration used for measuring
the e}ective thermal conductivity of a saturated porous
medium] uniform heating at one end "with electric resist!
ance\ for instance# and isothermal cooling at the other
end "e[g[\ with two!phase convective cooling#[ The gen!
eral solution is then

t �
d

l
ðsinh"lx#−tanh"lL# cosh"lx#Ł[ "19#
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The deviation from thermal equilibrium in this case is
identically zero everywhere in the domain when d � 9 or
when l tends to in_nity[ From equation "08# the _rst
condition translates into kf � ks[ The second condition is
satis_ed\ from equation "7#\ when 2 tends to in_nity\ i[e[\
when the heat transfer between phases is so e.cient that
the phases cannot sustain a nonequilibrium condition\ or
when either fkf or "0−f#ks tends to zero\ that is\ when
either phase is adiabatic or nonexistent within the
domain[

The nondimensional form of equation "19# is

u � sinh"LX#−tanh"L# cosh"LX#[ "10#

Figure 3 presents the nonequilibrium temperature dis!
tribution in X\ for several values of L[ In contrast with
Fig[ 0\ the nonequilibrium temperature distribution is
now plotted throughout the entire domain X because the
right!hand side of equation "10# is no longer an odd
function of X[ The combining e}ects of equally par!
titioned heat ~ux condition at X � 9 and equilibrium
temperatures at X � 0 are evident[

The observations in the paragraphs following Fig[ 0
are relevant to Fig[ 3[ The case L � 0 of Fig[ 3 reveals that
u decreases almost linearly with increasing X[ Assuming
constant l and d\ the decrease in u is translated into a
decrease in the nonequilibrium temperature t\ i[e[\ the
nonequilibrium disappears when approaching X � 0\ as
expected[

Decreasing the value of L to 9[4\ 9[0\ and 9[90\ reveals
a clear reduction in the u variation with X[ Notice in Fig[
3 that u"L0#:u"L1# ½"L0:L1#\ where L0 and L1 are any
two L values ¾ 0[9[ We can then conclude\ again\ that
for L ¾ 0[9 the system is in maximum nonequilibrium
condition[ When the coe.cient L increases beyond 0[9\
the u variation with X is further increased[ However\ the
variation of u with X is increasingly nonlinear indicating

Fig[ 3[ Nondimensional nonequilibrium temperature distribution along X] equal heat ~ow at X � 9\ thermal equilibrium at X � 0[

that the nonequilibrium temperature "or the di}erence in
phase temperatures# is decreasing[

These observations have an important practical impli!
cation] for an experimental con_guration with equal heat
~ux partition between the phases at one end\ thermal
equilibrium between the phases at the other end\ and with
L ¾ 0[9\ most of the system is likely to be in thermal
nonequilibrium[ Because of the di.culty in monitoring
the average temperatures of both phases\ one could use
the criterion L Ł 0[9 to signal when most of the system
is in thermal equilibrium "see for L � 29\ in Fig[ 3\ only
19) of the entire length of the layer would be in non!
thermal equilibrium#[ In dimensional form\ the criterion
translates into]

L Ł $2 0
0

fkf

¦
0

"0−f#ks1%
0:1

[ "11#

Notice that criterion "11# is also valid when determining
the thermal equilibrium condition for the general con!
_guration of Case 0[

Unfortunately\ there are not many models available in
the literature for estimating 2[ As an example we cite
Quintard and Whitaker|s ð29Ł suggested relation]

2 � fkf

39sk

d1

"s1¦s¦0#

"0¦4k#¦s"1¦k#¦"s3¦1s2¦1s1#"0−k#

"12#

where d is the characteristic length of a ~uid and solid
"sphere# cell\ s �"0−f#0:2 and k � ks:kf[ Although
derived considering a periodic array of spheres\ relation
"12# can provide a reasonably good estimate of 2 even in
regions near the boundaries when the rev of the medium
is small[

We point out that although in most practical con!
_gurations the value of 2 is relatively large\ making the
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maximum thermal nonequilibrium state unlikely to
occur\ the di}erence between solid and ~uid temperatures
at the uniform heat ~ux boundary can be very large[ For
instance\ consider a 0[9 m porous layer consisting of
copper spheres "f � 9[3\ d � 9[91 m\ ks � 275
W m−0 >C−0# saturated with water "kf � 9[50
W m−0 >C−0# and heated at 04 kW m−1 from one end and
cooled isothermally at the other[ The thermal non!
equilibrium\ i[e[\ the di}erence between solid and ~uid
temperatures\ at the heated end is approximately 64>C[
This temperature di}erence a}ects the calculation of the
e}ective thermal conductivity of the medium based on
the di}erence of solid temperatures measured at the two
boundaries of the medium[ Therefore\ it is essential that
the temperature measurement be done away from the
heated boundary[

This kind of departure from the thermal equilibrium
condition at the heated boundary can be responsible for
the strange behavior and the scatter observed on plots of
experimental e}ective thermal conductivity data ð00Ł[

Before proceeding we should consider the statement
made by Quintard and Whitaker ð29Ł on page 1673]
{{[ [ [ local thermal equilibrium is always valid for steady
0D heat conduction[|| This conclusion was drawn\ fol!
lowing the average Laplace equation\ from the obser!
vation that the temperature gradient must be constant
in one!dimension steady conduction[ However\ we have
demonstrated that the average Laplace equation is sig!
ni_cant "valid# only when thermal equilibrium exists and
that thermal equilibrium is closely tied to the boundary
conditions imposed by the surroundings of the saturated
porous material[ This aspect was not considered by Quin!
tard and Whitaker\ even though they insinuated the limi!
tations of their approach by writing on page 1673]
{{[ [ [ information about a _eld [ [ [ was best obtained by an
examination of the [ [ [ boundary conditions [ [ [ [
However\ the estimate [ [ [ is based only on the governing
di}erential equation and thus must be used with some
care[||

3[ Summary and conclusions

We have examined the issue of boundary conditions
and thermal equilibrium on a fully saturated porous me!
dium considering the simple con_guration of steady con!
duction through a porous layer[

Our analysis has demonstrated that when a uniform
heat ~ux condition "same heat ~ow per unit of phase area
through each phase# is imposed at both boundaries of
the layer\ the phases will be in thermal equilibrium only
if kf � ks[ In the case of equal heat ~ow through each
phase\ the saturated porous layer will be in thermal equi!
librium only if fkf �"0−f#ks[

Furthermore\ if the boundary temperature of the
phases are equal "i[e[\ thermal equilibrium at the external

boundaries#\ the entire saturated porous medium will be
in thermal equilibrium\ and the ratio of ~uid heat ~ux to
solid heat ~ux is unique and easily predicted[

The case of hybrid boundary conditions considering
uniform heat ~ux at one end and thermal equilibrium at
the other is also investigated[ This con_guration yields
four conditions for thermal equilibrium\ namely
fkf �"0−f#ks\ 2 : �\ "kf\ ks# : 9\ or when f :"9\ 0#[
The condition L ¾ 0[9 limits the nonequilibrium tem!
perature to its maximum state^ a further decrease in L
does not alter the temperature distribution within each
phase along the porous layer[

We have shown also that although for most practical
situations thermal equilibrium will prevail in most of the
layer\ the thermal nonequilibrium at the heated boundary
can drastically a}ect the measurement of the e}ective
thermal conductivity of the medium[ Care should be exer!
cised by measuring the phase temperature\ within the
layer\ at a su.cient distance from the heated boundary
to satisfy the thermal equilibrium condition[ A criterion
to estimate this distance has also been presented[ Existing
e}ective thermal conductivity data should be reanalyzed
in light of these new observations[
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